

Overview

Project Summary

●​ Name: Hyperbot(BOT)
●​ Platform: EVM-compatible chains
●​ Language: Solidity
●​ Address:

○​ 0x59537849f2a119ec698c7Aa6C6DaAdc40C398A25
●​ Audit Range: See Appendix - 1

Project Dashboard
Application Summary

Name Hyperbot(BOT)

Version v2

Type Solidity

Dates Sep 02 2025

Logs Sep 01 2025; Sep 02 2025

Vulnerability Summary

Total High-Severity issues 0

Total Medium-Severity issues 0

Total Low-Severity issues 2

Total informational issues 7

Total 9

Contact
E-mail: support@salusec.io

1

https://bscscan.com/address/0x59537849f2a119ec698c7Aa6C6DaAdc40C398A25

Risk Level Description

High Risk

The issue puts a large number of users’ sensitive

information at risk, or is reasonably likely to lead to

catastrophic impact for clients’ reputations or serious

financial implications for clients and users.

Medium Risk

The issue puts a subset of users’ sensitive

information at risk, would be detrimental to the client’s

reputation if exploited, or is reasonably likely to lead

to a moderate financial impact.

Low Risk

The risk is relatively small and could not be exploited

on a recurring basis, or is a risk that the client has

indicated is low impact in view of the client’s business

circumstances.

Informational
The issue does not pose an immediate risk, but is

relevant to security best practices or defense in

depth.

2

Content

Introduction​ 4

1.1 About SALUS​ 4
1.2 Audit Breakdown​ 4
1.3 Disclaimer​ 4

Findings​ 5
2.1 Summary of Findings​ 5
2.2 Notable Findings​ 6

1. Missing State Change Validation​ 6
2. Centralization risk​ 7

2.3 Informational Findings​ 8
3. Incomplete Docstrings​ 8
4. Missing two-step transfer ownership pattern​ 9
5. Lack of Security Contact Information for Responsible Disclosure​ 10
6. Underscore prefix for public variables​ 11
7. Lack of Indexed Event Parameters​ 12
8. Non-explicit Imports Reduce Code Readability​ 13
9. Custom Errors in require Statements​ 14

Appendix​ 15
Appendix 1 - Files in Scope​ 15

3

Introduction

1.1 About SALUS
At Salus Security, we are in the business of trust.

We are dedicated to tackling the toughest security challenges facing the industry today. By
building foundational trust in technology and infrastructure through security, we help clients
to lead their respective industries and unlock their full Web3 potential.

Our team of security experts employ industry-leading proof-of-concept (PoC) methodology
for demonstrating smart contract vulnerabilities, coupled with advanced red teaming
capabilities and a stereoscopic vulnerability detection service, to deliver comprehensive
security assessments that allow clients to stay ahead of the curve.

In addition to smart contract audits and red teaming, our Rapid Detection Service for smart
contracts aims to make security accessible to all. This high calibre, yet cost-efficient, security
tool has been designed to support a wide range of business needs including investment due
diligence, security and code quality assessments, and code optimisation.

We are reachable on Telegram (https://t.me/salusec), Twitter (https://twitter.com/salus_sec),
or Email (support@salusec.io).

1.2 Audit Breakdown
The objective was to evaluate the repository for security-related issues, code quality, and
adherence to specifications and best practices. Possible issues we looked for included (but
are not limited to):

●​ Risky external calls
●​ Integer overflow/underflow
●​ Transaction-ordering dependence
●​ Timestamp dependence
●​ Access control
●​ Call stack limits and mishandled exceptions
●​ Number rounding errors
●​ Centralization of power
●​ Logical oversights and denial of service
●​ Business logic specification
●​ Code clones, functionality duplication

1.3 Disclaimer
Note that this security audit is not designed to replace functional tests required before any
software release and does not give any warranties on finding all possible security issues with
the given smart contract(s) or blockchain software, i.e., the evaluation result does not
guarantee the nonexistence of any further findings of security issues.

4

Findings
2.1 Summary of Findings

ID Title Severity Category Status

1 Missing State Change Validation Low Data Validation Acknowledged

2 Centralization risk Low Centralization Acknowledged

3 Incomplete Docstrings Informational Code Quality Acknowledged

4 Missing two-step transfer ownership pattern Informational Business logic Acknowledged

5 Lack of Security Contact Information for
Responsible Disclosure

Informational Configuration Acknowledged

6 Underscore prefix for public variables Informational Code Quality Acknowledged

7 Lack of Indexed Event Parameters Informational Code Quality Acknowledged

8 Non-explicit Imports Reduce Code Readability Informational Code Quality Acknowledged

9 Custom Errors in require Statements Informational Gas
Optimization

Acknowledged

5

2.2 Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

1. Missing State Change Validation

Severity: Low Category: Data Validation

Target:
-​ SampleToken.sol

Description

When calling the `setTransferController` function to update the `_transferController`
variable, there is no check to see if the new value differs from the existing one. This can
result in unnecessary state writes and event emissions, increasing gas costs and potentially
impacting contract performance.

SampleToken.sol:L65 - L69
function setTransferController(address newValue) external onlyOwner {​
 address oldValue = _transferController;​
 _transferController = newValue;​
 emit ChangeTransferController(oldValue, newValue);​
}

SampleToken.sol:L58 - L62
if (_transferMode != TransferMode.NORMAL) {​
 uint256 oldValue = _transferMode;​
 _transferMode = newValue;​
 emit ChangeTransferMode(oldValue, newValue);​
}

Recommendation

It is recommended to verify whether the new value differs from the existing value before
updating state variables. Perform the update only when the value actually changes to save
gas and reduce redundant event emissions.

Status

This issue has been acknowledged by the team.

6

Description

The `SampleToken` contract has privileged accounts. When the contract is deployed,
`totalSupply` will be minted to the owner, and the owner has the right to update the
`transferController` variable. The `transferController`has the right to change the
`transferMode`.

If the owner’s private key is compromised, an attacker can freely use all tokens under that
address and arbitrarily modify the `transferController` and `transferMode`.

If the privileged accounts are plain EOA accounts, this can be worrisome and pose a risk to
the other users.

Recommendation

We recommend transferring privileged accounts to multi-sig accounts with timelock
governors for enhanced security. This ensures that no single person has full control over the
accounts and that any changes must be authorized by multiple parties.

Status

This issue has been acknowledged by the team.

7

2. Centralization risk
Severity: Low Category: Centralization

Target:
-​ SampleToken.sol

2.3 Informational Findings

3. Incomplete Docstrings

Severity: Informational Category: Code Quality

Target:
-​ SampleToken.sol

Description

The `SampleToken` contract lacks NatSpec (Ethereum Natural Specification) comments for its
functions, parameters, return values, and events. NatSpec comments are widely adopted in
the Solidity ecosystem to improve code readability, facilitate static analysis, and provide
structured documentation for developers, integrators, and automated tools.

The absence of NatSpec documentation may lead to:
●​ Reduced code clarity and maintainability.
●​ Higher risk of misusing functions or misunderstanding their intended behavior.

Recommendation

It is recommended to provide complete documentation for all public functions and events,
including details on their parameters and return values. Following the Ethereum Natural
Specification Format (NatSpec) is highly encouraged to ensure consistency, readability, and
usability. Comprehensive documentation improves long-term maintainability and facilitates
both auditing and integration processes.

Status

This issue has been acknowledged by the team.

8

https://solidity.readthedocs.io/en/latest/natspec-format.html
https://solidity.readthedocs.io/en/latest/natspec-format.html

4. Missing two-step transfer ownership pattern

Severity: Informational Category: Business logic

Target:
-​ SampleToken.sol

Description

The `SampleToken` contract inherits from the `Ownable` contract. This contract does not
implement a two-step process for transferring ownership. Thus, ownership of the contract
can easily be lost when making a mistake in transferring ownership.

Recommendation

Consider using the Ownable2Step contract from OpenZeppelin instead.

Status

This issue has been acknowledged by the team.

9

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol

5. Lack of Security Contact Information for Responsible
Disclosure

Severity: Informational Category: Configuration

Target:
-​ SampleToken.sol

Description

The contract `SampleToken` does not specify a security contact point. Including a designated
security contact (such as an email address or ENS name) in the contract’s NatSpec header
facilitates responsible vulnerability disclosure. This makes it easier for external researchers
to quickly reach the appropriate team in the event a vulnerability is identified, helping
minimize the time window between discovery and mitigation. The Ethereum community has
begun standardizing this practice using the `@custom:security-contact` tag, adopted by tools
such as OpenZeppelin Wizard and ethereum-lists.

Recommendation

Consider adding a NatSpec comment at the top of the contract with a
`@custom:security-contact` field pointing to the preferred disclosure channel.

Status

This issue has been acknowledged by the team.

10

6. Underscore prefix for public variables

Severity: Informational Category: Code Quality

Target:
-​ SampleToken.sol

Description

When declaring variables in a smart contract, it is common practice to add a leading
underscore for non-external variables, while public variables are written without it. This
helps developers efficiently distinguish variable visibility and improves code readability. In
some cases, `constructor` parameters may have the same name as internal variables.
Using a leading underscore can avoid such naming conflicts.

Recommendation

Consider removing the leading underscore prefix from public variables, and apply it only to
internal and private variables, in line with the recommendations provided by soliditylang’s
guidelines.

Status

This issue has been acknowledged by the team.

11

https://docs.soliditylang.org/en/latest/style-guide.html#underscore-prefix-for-non-external-functions-and-variables

7. Lack of Indexed Event Parameters

Severity: Informational Category: Code Quality

Target:
-​ SampleToken.sol

Description

Within the `SampleToken` contract, multiple events are missing indexed parameters. This
prevents off-chain services from efficiently querying or filtering logs based on specific values
. As a result, applications, analytics tools, and monitoring systems must scan all emitted logs
instead of filtering directly, which increases computational overhead, reduces efficiency, and
makes it harder to track user actions or state changes. In large-scale systems, this limitation
can cause performance bottlenecks and hinder real-time monitoring or analytics capabilities.

SampleToken.sol:L23 - L24
event ChangeTransferController(address oldValue, address newValue);​
event ChangeTransferMode(uint256 oldValue, uint256 newValue);

Recommendation

To improve the ability of off-chain services to search and filter for specific events, consider
indexing event parameters.

Status

This issue has been acknowledged by the team.

12

https://solidity.readthedocs.io/en/latest/contracts.html#events

8. Non-explicit Imports Reduce Code Readability

Severity: Informational Category: Code Quality

Target:
-​ SampleToken.sol

Description

The contract `SampleToken.sol` uses wildcard or global-style import statements such as
`import "@openzeppelin/contracts@4.9.6/access/Ownable.sol";`, which introduce all symbols
from the imported file into the current compilation unit. While functional, this approach can
reduce code readability and make it unclear which specific contracts, interfaces, or types
are actually being used in the file. Explicit import { A, B } from "<path>"; declarations are
generally preferred, as they make dependencies explicit and reduce the potential for
namespace conflicts or unintentional symbol usage.

Recommendation

Consider refactoring a complete import statement to use named import syntax.

Status

This issue has been acknowledged by the team.

13

9. Custom Errors in require Statements

Severity: Informational Category: Gas Optimization

Target:
-​ SampleToken.sol

Description

SampleToken.sol:L36 - L63
function _beforeTokenTransfer(​
 address from,​
 address to,​
 uint256 amount​
) internal virtual override {​
 super._beforeTokenTransfer(from, to, amount);​
 if (_transferMode == TransferMode.RESTRICTED) {​
 revert("Transfer is restricted");​
 }​
 if (_transferMode == TransferMode.CONTROLLED) {​
 require(from == _transferController || to == _transferController, "Invalid
transfer");​
 }​
}​
​
function setTransferMode(uint256 newValue) external {​
 require(msg.sender == _transferController, "Caller is not the transfer controller");​
 require(newValue <= TransferMode.MAX_VALUE, "Invalid mode");​
​
 if (_transferMode != TransferMode.NORMAL) {​
 uint256 oldValue = _transferMode;​
 _transferMode = newValue;​
 emit ChangeTransferMode(oldValue, newValue);​
 }​
}

The `SampleToken.sol` contract uses <if (condition) revert("error message") statements and
require(condition, "error message") statements>. Since Solidity version 0.8.26, require
statements support custom errors, which are more gas-efficient and improve code clarity.
Initially, this feature was only available through the IR pipeline, but starting from Solidity
0.8.27, it is also supported in the legacy pipeline.

Recommendation

Consider replacing all if-revert statements and require(condition, "error message")
statements with require(condition, CustomError()) to improve readability and reduce gas
consumption.

Status

This issue has been acknowledged by the team.

14

Appendix
Appendix 1 - Files in Scope
This audit covered the following files at address

0x59537849f2a119ec698c7Aa6C6DaAdc40C398A25:

File SHA-1 hash

SampleToken.sol cded6e076ed7ec9b78d31d00571e95b6dbfd0e87

15

https://bscscan.com/address/0x59537849f2a119ec698c7Aa6C6DaAdc40C398A25

	
	
	
	Introduction
	1.1 About SALUS
	1.2 Audit Breakdown
	1.3 Disclaimer

	Findings
	2.1 Summary of Findings
	
	2.2 Notable Findings
	1. Missing State Change Validation
	2. Centralization risk

	2.3 Informational Findings
	3. Incomplete Docstrings
	4. Missing two-step transfer ownership pattern
	5. Lack of Security Contact Information for Responsible Disclosure
	6. Underscore prefix for public variables
	7. Lack of Indexed Event Parameters
	8. Non-explicit Imports Reduce Code Readability
	9. Custom Errors in require Statements

	Appendix
	Appendix 1 - Files in Scope

